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ABSTRACT

We investigate the condition on transmission radius needed
to achieve connectivity in duty-cycled wireless sensor net-
works (briefly, DC-WSN). First, we settle a conjecture of
Das et. al. (2012) and prove that the connectivity condition
on Random Geometric Graphs (RGG), given by Gupta and
Kumar (1989), can be used to derive a weak sufficient con-
dition to achieve connectivity in DC-WSN. We also present
a stronger result which gives a necessary and sufficient con-
dition for connectivity and is hence optimal. The optimality
of such a radius is also tested via simulation for two specific
duty-cycle schemes, called the contiguous and the random
selection duty-cycle scheme.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless Com-
munication

General Terms

Theory, Design, Performance, Experimentation
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1. INTRODUCTION
Careful control of transmission power is required in wire-

less sensor networks to ensure that data can be sent while
wasting minimum energy in interference and collision. This
tradeoff translates into the question: what is the optimal ra-
dius for the connectivity of the WSN graph? This has been

∗This work has been partially supported by the Research
Grant 2010N5K7EB from MIUR and Project Sapienza 2011
”Green and Secure Wireless Networking”.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSWiM’13, November 3–8, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-2353-6/13/11

http://dx.doi.org/10.1145/2507924.2507985 ...$15.00.

studied using the Random Geometric Graph (RGG) model
by Gupta and Kumar [3] among others.

To save energy even during sensing and processing activ-
ities, often sensors are organized in Duty-Cycled Wireless
Sensor Networks (briefly, DC-WSNs). In such networks, sen-
sors alternate between the awake and the sleep mode. Dur-
ing the sleep mode, the sensors recharge or conserve their
batteries; during the active mode, the sensors sense, process
and communicate. However, for the duty-cycled network
to function as it should, we need two properties: (a) Time
coverage, i.e. data generated at any time must be sensed
and relayed by the network, and (b) connectivity, i.e. every
node should be connected to every other node. The study
of the conditions that guarantee these properties is the fo-
cus of this paper. This problem was initially investigated
in [2], where it was conjectured that the DC-WSN is con-
nected if in every time slot the nodes awake form a RGG
connected in that time slot. We have settled this conjecture
although we do not have space to present the proof here [1].
We have also established that the radius of connectivity that
this conjecture implies is not optimal, i.e. a lower connection
radius is sufficient. This lower connection radius, we call it
the strong radius as opposed to the weak radius conjectured
in [2], is also to be optimal in the sense that it provides a
necessary condition for connectivity. We present two natural
duty-cycling schemes, called the contiguous scheme and the
random selection scheme that both satisfy the time coverage
property. Apart from being useful duty-cycling schemes for
real applications, these schemes also highlight the contribu-
tion of this paper since they have the same weak radius of
connectivity but very different strong radii.

Related work and Motivation.
Power conservation mechanisms for WSNs may be classi-

fied into two main categories: active and passive [4]. Active
mechanisms achieve energy conservation by smartly defining
energy-efficient network protocols. Since they do not turn
off the sensors, the connectivity property of the wireless sen-
sor networks is preserved. Passive mechanisms save power
by turning off the radio/sensing sensor module. As surveyed
in [4], passive mechanisms can apply turn-off techniques at
the physical layer for reducing the CPU energy in idle sys-
tem states, or at the MAC layer by leading such a layer to
decide when there is a frame destinated to it and then turn-



off the radio interface for the remaining time of the frame,
or utilizing higher layer application informations to decide
when turn-off the radio. Since turning off the sensors makes
the topology of the wireless sensor networks dynamic, the
connectivity of such networks needs to be investigated.

2. THE DUTY-CYCLE MODEL
We first define our notation and the model following [2]. A

random geometric graph RGG(n, r) is a graph with vertex
set V of n points distributed uniformly at random in the
unit circle centred at the origin. To this we add a point at
the origin. There are edges between any two u, v ∈ V such
that d(u, v) ≤ r where d(·, ·) is a distance defined on R

2.
In the duty-cycled setting all the nodes in the network

are assumed to be synchronized and following a periodic
pattern of sleeping and waking. Although the sleeping and
waking patterns of different sensors may be different, they all
share the same period, and each cycle of this periodic pattern
(known as a duty cycle) begins and ends at the same time for
all the nodes. As described in [2], the primary parameters
of a duty-cycled wireless sensor network are L, length of the
duty cycle, and d, the number of waking slots where d < L
and we use the notation δ = ⌈d/L⌉ to indicate the duty-
cycle ratio, which is a measure of the energy spent by each
sensor in each cycle. Each sensor u chooses its waking slots
which we denote by the set Au where Au ⊆ {0, 1, . . . , L−1}
and |Au| = d. Given a scheme A for choosing these waking
slots, we define the duty-cycle graph DC-WSNA(n, r, δ, L)
as follows: it has the same vertex set as RGG(n, r) and
its edge set is: E = {(u, v) : d(u, v) ≤ r,Au ∩ Av 6= ∅}.
Namely, for two vertices u and v that are within transmission
range of each other to be connected, they must share a slot
where they are both awake. When the context requires it, we
will also use the notation DC-WSNA(n, r, δ, L, γ) to denote
a duty-cycle graph wherein the probability of two vertices
u and v that are within transmission range of each other
sharing a waking slot is γ.

A fundamental property desired of any duty-cycled sensor
network is connectivity i.e. it should be possible to send data
generated at any time at any node to any other node in the
network (within reasonable time).

Whenever the awake period of each sensor is (strictly)
more than half the duty cycle then each edge of the origi-
nal graph RGG(n, r) is available for at least one time slot
because any two waking periods must share a slot, i.e.

Fact 2.1. If δ > 1/2 then DC-WSN(n, r, δ, L) is con-
nected whenever RGG(n, r) is connected.

However, for δ ≤ 1/2, connectivity is not a given under
our current definition. Not only is it a random event whose
probability needs to be determined, it may also be an event
which occurs with probability 0. To ensure that the model
admits connectivity with non-zero probability we will need a
technical condition we call the reachability condition. Con-
sider a scheme A for selecting the waking slots of nodes.
Given the set L = {A : A ⊂ {0, 1, . . . , L − 1}, |A| = d}, let
us denote by L(A) all those subsets in L that have non-zero
probability of being selected as a waking schedule for a node.
Then, the reachability condition on A is the following:

Reachability. There is a finite k ≥ 0 such that for any
A1, A2 ∈ L(A), there are A1 = B0, . . . , Bk = A2 such that
Bi ∈ L(A), 0 ≤ i ≤ k, and Bi ∩Bi+1 6= ∅, 0 ≤ i < k.

We also need a notion which ensures that a duty-cycling
scheme does not allow time slots where no sensor is awake.
We call this notion time coverage.

Time coverage. For each k ∈ {0, 1, . . . , L − 1}, the prob-
ability that a node u is awake in slot k is δk > 0, where δk
may be a function of d and L but is not dependent on the
number of nodes in the network.

If all the δk are equal then we say that there is uniform
coverage.

3. CONNECTIVITY RESULTS
In this section we present a weak and a strong condition

on transmission radius needed to achieve connectivity.

The weak result.
The weak result Theorem 3.1 is a generalization of the

result first presented in Das et. al. [2].

Theorem 3.1. Given a duty-cycling scheme A with 0 <
δ ≤ 1/2 and d = ⌈δL⌉ > 1, and the marginal probability of
a node being awake in slot i denoted by δi, the probability
that DC-WSNA(n, r(n), δ, L) is connected tends to 1 as n →
∞ if A satisfies the reachability condition and the coverage
condition and if

πr2(n)δmin = (logn+ c(n))/n, (1)

such that c(n) → ∞ as n → ∞, where δmin = minL−1

k=0
δk.

We prove the theorem by considering a set of L subgraphs
of DC-WSNA(n, r, δ, L), one for each time slot in a typical
duty cycle. The proof proceeds by using Gupta and Kumar’s
result to show that each of these subgraphs is connected
with probability that goes to 1 as n → ∞ and that these
subgraphs are all connected with probability tending to 1 as
n → ∞. We omit details of the proof due to lack of space.

In the uniform coverage situation, i.e. δ0 = . . . = δL−1 =
δ = δmin, Theorem 3.1 gives us the theorem of [2].

The strong result.
In this section we develop and present our strong connec-

tivity result for duty-cycled WSNs, i.e. the most important
contribution of our paper. Proving this result involves defin-
ing a new “vertex-based” random connection model. This
model has four parameters. There are two finite positive
real numbers λ, r. The third parameter is a random vari-
able Z defined on some probability space (Ω,F ,P), that is
a function of the form Z : Ω → Q where Q is some domain.
The fourth parameter is a function f : Q×Q → {0, 1}. The
vertex set V is a Poisson point process in R

2 with density λ
with an additional point at the origin. With each u ∈ V we
associate a random variable Zu which is a copy of Z. All the
random variables in the collection {Zu : u ∈ V } are inde-
pendent of each other. Two vertices u and v with distance
r are connected by an edge if f(Zu, Zv) = 1. Clearly, for
this model to be useful, there should be non-zero probability
of an edge being formed between two points that are within
distance r of each other.

Since the vertex-based random connection model is a new
continuum percolation model, it is necessary to establish
certain properties like the existence of a critical density for
percolation (i.e. the formation of an infinite component),
the non-triviality of the critical density, and the uniqueness
of the infinite component. Since this is not directly relevant



to the duty-cycled networks setting and due to the lack of
space, we omit it here.

We now come to our main result dealing with the high-
density situation. Define the quantity qk(λ) = Pλ(|W | =
k), k ≥ 1 where W is the connected component containing
the origin i.e. qk(λ) is the probability that the component
containing the origin has size k for all finite values of k.
Our key contribution is that we can prove that the following
result proved by Penrose [5] for the high-density setting of
the random connection model also holds for the vertex-based
random connection model:

Lemma 3.2.

lim
λ→∞

∑∞
k=1

qk(λ)

q1(λ)
= 1

Since
∑∞

k=1
qk(λ) is the probability that the origin is part

of a finite sized component with at least 2 points in it, the
implication of the theorem is that as λ → ∞, the origin is
either isolated or part of the infinite component with prob-
ability 1.

We are now ready to denote by VB-RGG(n, r, γ), the
vertex-based random connection model graph with vertex
set consisting of n points uniformly distributed in the unit
circle centred at the origin, with radius bound r, and a con-
nectivity function g that uses a function f and and random
variable Z such that for any Z1 and Z2 that are indepen-
dent copies of Z, γ = P(f(Z1, Z2) = 1). Now, we are ready
to state our strong connectivity result in Theorem 3.3. We
omit the proof for space constraints.

Theorem 3.3. P(DC-WSNA(n, r, δ,L, γ) is connected) →
1 as n → ∞ if and only if

πr(n)2γ = (log n+ c(n))/n, (2)

where c = limn→∞ c(n) = ∞ as n → ∞.

4. SIMULATION RESULTS
In this section, we illustrate the significance of our results

for two specific duty-cycle schemes: the contiguous (we will
denote it DC-C-WSN) and the random selection (we will
denote it DC-R-WSN) schemes. The contiguous model has
been studied in [2]. There Au is chosen as follows: Each
sensor u independently chooses an integer iu from the set
{0, 1, . . . , L − 1} and is awake for the all the time slots iu
to iu + d − 1, then asleep from all the time slots iu + d
to iu + L, repeating this cycle indefinitely. In the random
selection model, each node chooses a set Au of size d at
random from {0, 1, . . . , L− 1}.

In the rest of this section, we first test the weak radius by
measuring the percentage of sensors belonging to the largest
component in DC-C-WSN and DC-R-WSN for various val-
ues of n, L and δ. Then, we repeat the experiments using
the optimal radius.

Experimental setup.
In regard to the duty-cycle parameters, we select δ varying

between 0.05 and 0.5 according to Fact 2.1. Then either we
calculate d = ⌈δL⌉ by fixing L = 100, or we derive L = ⌈d/δ⌉
by fixing d = 5. In addition to d, L, and r(n), some infor-
mations are stored in the file for each sensor, depending on
the duty-cycle scheme. For DC-C-WSN, we store for each
sensor its start time, generated at random. For DC-R-WSN,

we store a bitmap of length L. This bitmap will have d of
its bits set to 1, which implies that the sensor is awake in
that time slot, and the rest of them set to 0. To add an edge
between two sensors, we check if they lie within the connec-
tivity radius and if they share a common awake slot. To find
the connected component, we make use of the Union Find
algorithm. We start assigning unique flags to each point
(i.e., each sensor belongs to an isolated component). Ini-
tially these flags point to themselves. As and when we get
an edge between two points, we combine the connected com-
ponents of both the points by pointing the head flag of one
component to the head flag of the other component. When
all edges have been added, the number of the distinct con-
nected components in the graph and their sizes are traced.
Each experiment is repeated at least three times and the av-
erage value is reported. The kd-tree spatial data structure
was used to process pairs of points in θ(n) time, and the
connected components were created in θ(n log n) time. As a
result testing connectivity for a random graph model with
106 node took approximately 20 minutes.

Weak connectivity condition.
Let the weak radius be the radius r(n) that satisfies Theo-

rem 3.1. Since both contiguous and random selection schemes
satisfies the uniform coverage situation with δ = ⌈d/L⌉, the
weak radius for both schemes yields:

r(n) =

√

log n+ c(n)

πnδ
(3)

with c(n) → +∞ as n → +∞.
Under the weak radius, in all our experiments in DC-C-WSNs

more than 99% sensors belong to the largest connected com-
ponent, while all the sensors belong to the largest component
in DC-R-WSNs. We omit these curves for lack of space.

Note that the weak radius is much larger than the trans-
mission radius required to achieve the connectivity in RGG.
In fact it is 1√

δ
times the RGG radius given in [3]. Such an

increase in the transmission radius means on average that,
since the power spent by each node in transmission is pro-
portional to the square of the radius and since nδ sensors
are awake, the overall energy spent is almost the same as in
regular (i.e. all awake) WSNs, thereby negating the effect
of duty-cycling.

Strong connectivity condition.
To apply the strong connectivity condition in Theorem 3.3

for the contiguous and random duty-cycle scheme, we need
to compute the probability γ in the VB-RGG model.

In DC-C-WSNs, a sensor v will share at least one slot with
node u if v chooses as its starting point any of iu−(d−1) mod
L, . . . , iu, . . . iu+(d−1) mod L, . . . , iu− (d−1) mod L slots.
Hence, two sensors have probability γ = 2d−1

L
of sharing one

slot. Now, let the strong DC-C-WSN radius be the radius
r(n) that satisfies Theorem 3.3 when γ = 2d−1

L
. We have:

Corollary 4.1. When γ = 2d−1

L
< 1, P(DC-C-WSN

is connected) → 1 as n → ∞ if and only if

r(n) =

√

log n+ c(n)

(2δ − 1/L)πn
, (4)

where c = limn→∞ c(n) = ∞.
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Figure 1: Strong radius:(a) in DC-C-WSN when n varies (b) in DC-R-WSN when n varies (c) in DC-C-WSN when δ varies

Note that if γ = 2d−1

L
> 1, the radius in (4) goes below

the lowest possible radius and it is no longer meaningful.
However, γ = 2d−1

L
> 1 implies δ > 1/2, and by Fact 2.1

the RGG radius given in [3] guarantees connectivity.
In DC-R-WSNs, when a node u has chosen d slots, another

node v has d possibilities to choose one slot in common with
u and the probability of doing that is at least δ each time.
Hence, the probability that two sensors share one slot is
γ >

(

1− (1− δ)d
)

. Therefore, by Theorem 3.3, the strong
DC-R-WSN radius must satisfy:

Corollary 4.2. P(DC-R-WSN is connected) → 1 as
n → ∞ if and only if

r(n) =

√

log n+ c(n)

(1− (1− δ)d)πn
, (5)

where c = limn→∞ c(n) = ∞.

Under the strong radius, Figures 1a and 1b show the per-
centage of sensors belonging to the largest component when
L = 100, c(n) = log log n, 105 ≤ n ≤ 106, δ = 0.05, 0.15
and 0.25. For both schemes, fixing a value of δ, the size of
the largest connected component increases when n increases
since (3) holds for n → +∞. On the other hand, fixing a
value of n, when δ increases, the the number of nodes in the
largest connected component slightly decreases according to
the fact that the radius r(n) decreases. Nonetheless, for all
the experiments on DC-C-WSNs, more than 90% of the sen-
sors belong to the largest component. Such a percentage is
disregarded by the DC-R-WSNs only for small values of n
and large values of δ, as for n = 2 · 105 or n = 4 · 105 and
δ = 0.25 (see Figure 1b). This shows that the reliance on
the asymptotic condition for n is stronger for DC-R-WSNs
than for DC-C-WSNs.

Figures 1c and 2 depict the percentage of sensors belong-
ing to the largest component in both schemes when n = 106,
L = 100, c(n) = log log n and 0.1 ≤ δ ≤ 0.5. The results
are almost as good as the ones for the weak radius, but
the strong radius is much smaller than the weak one (see
Table 1). Fig. 2 shows a drop off in the percentage of con-
nectivity when δ = 0.20, although the connectivity remains
high at more than 90%. The gain between the strong and
the weak radius in Table 1 is about a factor of

√
2 for the

contiguous scheme, while is more important for the random
scheme. In conclusion, the strong connectivity condition un-
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Figure 2: Strong radius in DC-R-WSN when δ varies.

L = 200 L = 100

δ DC-C-WSN DC-R-WSN DC-C-WSN DC-R-WSN

0.10 1.396 3.374 1.378 3.918

0.15 1.402 2.591 1.390 2.702

0.20 1.405 2.236 1.396 2.249

0.50 1.410 1.414 1.407 1.414

Table 1: The ratio of the weak to the strong radius in
DC-C-WSN and DC-R-WSN for different δ and L.

doubtedly leads to a great gain in the radius length, and a
great energy saving in power transmission for both schemes.
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