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Abstract We report a general formula for the critical electric field required to trigger
a pattern formation in a Turing system in the presence of an electric field (drift term).
Our result encompasses all situations from pure diffusion to pure drift.

Keywords Turing system · Reaction-diffusion system · Pattern formation ·
Electric field · Differential mobility

1 Introduction

Pattern formation in two reacting and diffusing systems was first studied by Turing
[1,2]. Turing argued that if the diffusion coefficients of the two species are widely
different, then if one of the species is auto-catalytic with the other inhibiting its growth,
then the steady homogenous state will be unstable to a patterned steady state. The
instability could also set in a temporal pattern in a spatially homogeneous state under
certain conditions. Turing patterns have been a very important aspect of the study of
non-linear systems [3–10]. Decades later it was found by Rovinsky and Menzinger
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[11–13] that pattern formation could occur even if the two diffusion coefficients were
nearly equal provided there was an external electric field and the diffusion species
were charged giving rise to a gradient coupling. The pattern formed in this case would
be drift induced travelling waves as opposed to the stationary patterns of Turing.
Recently there has been extension of the Turing work in some unexpected directions
[14–16]. In a recent study, Riaz et al. [17,18] have shown numerically that a Turing
pattern for charged species could be altered by an applied electric field [19]. We will
demonstrate here that some analytic results can be derived that help understand the
numerical results of Riaz et al. [17].

In this paper, we revisit the pattern formation problem with an external electric
field to arrive at a single analytic result that has the property of capturing all the
possible conditions for the instabilities in the system. It should be noted that while
the work described here refers to chemical pattern formation, the analysis should also
generalise in a situation where the species are neutral but kept in a medium which has
a velocity in a definite direction. This should be a case of an advective field. Here we
work with a two dimensional set up as in the work of Riaz et al. We take the system
to be unbounded in the y-direction and bounded by walls in the x-direction at x =
±L. The boundary conditions are that the concentration of the species vanishes at the
boundary and so does the current normal to the plates which is proportional to the
x-direction of the concentrations. The electric field is taken to be in the x-direction
which leads to a drift in that direction. The existence of the plates in the x-direction is
vital to keep the system bounded. The plates also play the very important role of fixing
the wave number in the x-direction. In the absence of the constraint there will be an
overall selection mechanism for the wave numbers (k = k1 + k2) but the individual
components are not uniquely determined. What we will se below is that k1 is fixed by
the boundary condition and thus once k2 is known both k1 and k2 will be determined.
In the work of Riaz et al. [17] the fixing of k1 and k2 is undertaken numerically. Here
the analytic fixing of k1 allows us to find a general expression for the thresholds of the
different instabilities. The central result of our paper is expressed in Eq. (23) which
includes stability results for all possible situations.

2 Reaction-diffusion system with electric field effects

The general reaction-diffusion problem for two species A(x,y,t) and B(x,y,t) can be
modelled by the evolution equations [17]

∂ A

∂t
= D∇2 A + z2 E D

∂ A

∂x
+ f (A, B) (1)

∂ B

∂t
= ∇2 B + z1 E

∂ B

∂x
+ g(A, B) (2)

In the above D is the diffusion coefficient for the species A in units where the
diffusion coefficient for the species B is unity. The external electric field in the x-
direction is denoted by E and z1 and z2 are the charges associated with the inhibitor
and activator respectively. The operator ∇2 is two dimensional (pattern on a substrate)
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and the function f(A,B) and g(A,B) describe the growth and interaction of the species
A and B. The electric field terms come from an expression for the current together
with relevant Einstein’s relation. In the Gierer–Meinhardt model [20,21].

f(A, B) = A2

B
− A + σ

g(A, B) = μ(A2 − B)

The growth rate of A due to interaction with the substrate is σ and the natural decay
rate for B is μ. In the Lengyel–Epstein model [22].

f(A, B) = σb

(
B − AB

1 + B2

)

g(A, B) = a − B − 4AB

1 + B2

where σ , b and a are constants. The homogenous steady state is A = Ao and B = Bo

such that f(Ao, Bo) = g(Ao, Bo) = 0. The linear stability analysis around A = Ao and
B = Bo leads to

d(δA)

dt
= D∇2δA + z2ED

∂(δA)

∂x
+ a11δA + a12δB (3)

d(δB)

dt
= ∇2δB + z1E

∂(δB)

∂x
+ a21δA + a22δB (4)

where a11 =
(

∂ f
∂ A

)
Ao Bo

, a12 =
(

∂ f
∂ B

)
Ao Bo

, a21 =
(

∂g
∂ A

)
Ao Bo

and a22 =
(

∂g
∂ B

)
Ao Bo

.

We consider a geometry which is confined by plates at x = ±L and is unbounded
in the y-direction. The solution will be periodic in y-direction and if we take the wave
number in this direction to be k2, then we can write

(δA, δB) = (A1(x), B1(x))e(ik2 y)e(λt) (5)

where λ is the eigen value determining the growth. Then A1(x) and B1(x) satisfy the
differential equation

[
λ + Dk2

2 − D
d2

dx2 − z2 E D
d

dx
− a11

]
A1 = a12B1 (6)

[
λ + k2

2 − d2

dx2 − z1 E
d

dx
− a22

]
B1 = a21A1 (7)
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Eliminating B1 one can write

D
d4 A1

dx4 + ᾱ2
d3 A1

dx3 + [(a11) + Da22 − 2D2
2 − λ(1 + D) + z1z2DE2]d2 A1

dx2

+ [β̄2−λ(z1+z2 D)E]d A1

dx
+[�+λ2−λᾱ1−k2

2(a11+Da22)+Dk4
2]A1 = 0

(8)

where

ᾱ1 = a11 + a22 − (1 + D)k2
2

ᾱ2 = E D(z1 + z2)

β̄2 = E[z1a11 + z2 Da22 − (z1 + z2)Dk2
2]

� = a11a22 − a12a21

At this point the general procedure should be clear. We need to solve the homoge-
nous fourth order equation above. This will involve four arbitrary constants which
have to be fixed by boundary conditions. Since the system is homogenous the four
conditions will lead to four homogenous linear algebraic equations and for consistency
the determinant has to vanish. The resulting equation fixes λ in terms of L, k2, E and
other system parameters. The requirement Reλ ≥ 0 for instability allows us to discuss
the different situation that can occur. The above procedure is general and in principle
cumbersome. We illustrate this in the simpler situation of E = 0 and the Turing limit
i.e. D � 1. The lesson that we learn here will be put to good use for the complicated
case.

3 Wave number selection for E = 0

We proceed by setting E = 0 in Eq. (8) and obtain

D
d4 A1

dx4 + [a11 + Da22 − 2Dk2
2 − λ(1 + D)]d2 A1

dx2 + [λ2 − ᾱ1λ + Dk4
2

−k2
2(a11 + Da22) + �]A1 = 0 (9)

We assume a trial solution

A1 = ce(imx) (10)

where i =
√−1. Then from Eq. (9) we have

Dm4 − [Da22 + a11 − 2Dk2
2 − λ(1 + D)]m2 + [λ2 − ᾱ1λ + Dk4

2

−k2
2(a11 + Da22) + �] = 0 (11)
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For D � 1 (The Turing case) the two roots are approximately (we keep Dk2
2 since

k2 is not known a-priori)

m2
1 � a11 − λ − 2Dk2

2

D
(12)

m2
2 � λ2 − αλ − k2

2(a11 + Da22) + Dk4
2 + �

a11 − λ − 2Dk2
2

(13)

where α = a11 + a22 − k2
2.

For even solutions, we can write

A1 = c1cos(m1x) + c2cos(m2x) (14)

We impose the boundary condition that the fluxes d A1
dx and d B1

dx vanishes at
x = ±L. Now if we use Eq. (6) with E = 0 and take derivatives with respect to x,

it is immediately clear that d3 A1
dx3 has to vanish at x = ±L.

In the Turing limit m1 << m2 and hence cos(m1x) will have a fast oscillation
which will average out to zero. This forces the wave number selection m2L = π and
Eq. (11) becomes with m = m2 = π

L

λ2 −
[

T r A − (1 + D)

(
k2

2 + π2

L2

)]
λ −

(
k2

2 + π2

L2

)
a11 − Da22

π2

L2 + D

(
π2

L2

)2

+� + Dk4
2 − Da22k2

2 + 2Dk2
2
π2

L2 = 0 (15)

where TrA = a11 + a22.
We note that k2

2 + π2

L2 enters as a combination of which we call k2. In that case Eq.
(15) becomes

λ2 − (T r A − (1 + D)k2)λ − (a11 + Da22)k
2 + Dk4 + � = 0 (16)

This reproduces the Turing condition to the leading order in D, since we find the
condition for instability is

� − (a11 + Da22)
2

4D
< 0 (17)

and the characteristic wave number kmin is given by

k2
min = (a11 + Da22)

2D
(18)
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4 Instability condition for E �= 0

The lesson that we learnt from the above exercise is that the operator d
dx can be

effectively replaced by i π
2L and using Eq. (8), we determine λ from

λ2 − λ[T r A − (1 + D)k2 + i
π

2L
(z1 + z2 D)] + Dk4 − k2(a11 + Da22)

+� − iπ

2L
E D(k2 − a22) − iπ

2L
Ez1(Dk2 − a11) − π2

4L2 z1z2 E2 D = 0 (19)

The above equation can be written as

λ2 − λ(α1 + iα2) + β1 + iβ2 = 0 (20)

where

α1 = T r A − (1 + D)k2

α2 = − π

2L
E(z1 + z2 D)

β1 = Dk4 − k2(a11 + Da22) + � − π2

4L2 E2z1z2 D

β2 = − π

2L
E[z1a11 + z2 Da22 − (z1 + z2)Dk2] (21)

The real part of the eigen value λ in Eq. (19) will be negative (the condition that
the homogenous state will be stable) provided

β2
2 < α1(α1β1 + α2β2) (22)

using α1, α2, β1, β2 given in Eq. (21) leads after straightforward algebra to the central
result

(z1 − Dz2)
2[a11a22 − k2(a11 + Da22) + Dk4] π2

4L2 E2

> [T r A − (1 + D)k2]2[k2(a11 + Da22) − � − Dk4] (23)

This is our primary result. This is the single formula that contains all the possibilities
of the pattern formation in the presence of electric field.

We will now explore the various possibilities.
First consider the Turing problem E = 0. Now the right hand side of Eq. (23) has to

be negative for stability which means

� − k2(a11 + Da22) + Dk4 > 0 (24)

for stability. This is the central criterion for stability for all � > 0 in the presence
of diffusion. If the sign is reversed in Eq. (24), we get the Turing instability and for
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� > 0, this occurs for a band of wave number where the above expression is negative.
The minimum of the expression is obtained for k2 = a11+Da22

2D and the value at the

minimum is �− (a11+Da22)
2

4D and hence the instability criterion is � <
(a11+Da22)

2

4D , an
inequality which easy to satisfy for D � 1.

We now consider the opposite limit i.e. there is no diffusion and only drift. In this
case Eq. (23)

(z1 − Dz2)
2a11a22

π2

4L2 E2 > (T r A)2(−�) (25)

Since we want to start with an initially stable state i.e. TrA<0 and �0 >, we have
a11a22 <0 and Eq. (25) becomes

π E

2L
<

|T r A|
|z1 − Dz2|

( −�
a11a22

1/2)
(26)

This clearly shows that instability will set in if E > Eo where

π Eo

2L
= |T r A|

|z1 − Dz2|
( −�

a11a22

1/2)
(27)

We see immediately that for the instability to set in one must have a differential
mobility i.e. z1 �= Dz2. This result is in accordance with Rovinsky and Menzinger [9].
In the case of D�1 i.e. the two diffusivities are nearly equal (a situation very different
from Turing), we get for instability

(z1 − z2)
2[a11a22 − k2(a11 + a22) + Dk4] π2

4L2 E2

> [T r A − 2k2]2[k2(a11 + a22) − � − k4] (28)

We treat the situation which for E = 0 is stable so far as the reaction goes and is also
stable when diffusion is included. This implies � > 0, TrA < 0,�− (a11 + a22)k2 +
k4 > 0. The right hand side of Eq. (28) is now negative and for the inequality to hold,
we need a11a22 − k2(a11 + a22) + k4 < 0. With a11a22 < 0 and TrA < 0, we can
satisfy the inequality in the range 0 ≤ k ≤ ko where

2k2
o = TrA + √

T r(A) − 2a11a22 (29)

and for k < ko, the critical value of E which will trigger an instability will be
given by

π2

4L2 E2 >
(T r A − 2k2)2

(z1 − z2)2

k2(a11 + a22) − � − k4

a11a22 − k2(a11 + a22) + k4 (30)
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According to the above relation all wave numbers greater than ko are always sta-
ble. In writing down the above condition, we see the advantage of the exact expres-
sion of Eq. (23). The order of magnitude estimation in [9] does not yield the above
answer.

It is interesting to note that there is a clear demarkation of the roles of the dif-
fusion and electric field in the wave number selection of the instability. If the dif-
fusivities of the two species A and B are widely different, then the fast diffusion of
the species B which is antagonistic to the species A Eqs. (1) and (2) ensures that
the influence of the local fluctuation of A is restricted to a small region of space
which means that the ensuing pattern would have a small wavelength and a large k
value. In this range the rapid spatial variation makes the constant electric field ineffec-
tive. This probably indicates that a spatially varying electric field with the correctly
chosen wavelength may have a significant impact for D � 1. When the diffusion
rate of both the species are of the same order, then the Turing pattern would have a
larger wavelength and now the electric field can have a non negligible impact. That
is why the instability triggered by the electric field always has a wavelength larger
than a critical value. For D � 1, we expect that the constant electric field will have
little effect.

At this point we would like to compare with the findings of [17]. We use the same
parameters as they did namely a11 = 0.899, a12 = 1, a21 = −0.899 and a22 = −0.91.
This ensures Tr A<0 , |A|(�)>0 and also that there is no diffusion induced instability.
In [17], the authors have taken two values of E which they numerically find to be above
some threshold so that over a restricted range of small wave numbers the instability
against a patterned state can be seen. From Eq. (30). we can actually read off the
threshold above which the electric field needs to be set and also note that the wave
number has to be restricted to be below a cutoff given by Eq. (29).The relevant plot
for the threshold is shown in Fig. 1. Not only is this completely consistent with [17]
but gives the threshold for E for onset of instability as a function of the wave number

Fig. 1 Plot of critical electric field (E) versus wave number (k) for a11 = 0.899, a22 = −0.91, a12 =
1, a21 = −0.899, z1 = 1 and z2 = 2
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for any values of the system parameters. For an arbitrary diffusion coefficient D, our
basic results can be stated thus

– If for any D, diffusion destabilizes a stable reactive system, then k2(a11 + Da22)−
�− Dk4 > 0 and it follows that a11a22 −k2(a11 + Da22)+ Dk4 = a11a22 −�+
[� − k2(a11 + Da22) + Dk4] < 0 since a11a22 <0. Hence Eq. (23) can never be
satisfied. No amount of electric field can stabilize the system.

– If the diffusive system is stable i.e. k2(a11 + Da22) − � − Dk4 < 0, then a critical
E(Ec) will destabilize the state provided a11a22 − k2(a11 + Da22) + Dk4 < 0
which will happen if k < k′

o given by

k2′
o = a11 + Da22 + √

(a11 + Da22)2 − 4Da11a22

2D
(31)

For small enough D, k2′
o � a11 + Da22

D
and

π2

4L2 E2
c

� [T r A − (1 + D)k2]2

(z1 − Dz2)2 (
−�

a11a22
) (32)

5 Conclusion

In summary we have studied a reaction-diffusion system in the presence of a constant
electric field along a particular direction. We have found a single analytic expression
which contains all possible information about the stability and the instability of the
system for different ranges of the diffusion coefficient. The primary result that emerges
is that there is an upper limit on the wave number of the instability and that for each
wave number below that there is a critical electric field that can excite that particular
wave number.
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