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We show that in a reaction diffusion system on a two-dimensional substrate with advection in the
confined direction, the drift (advection) induced instability occurs through a Hopf bifurcation, which
can become a double Hopf bifurcation. The box size in the direction of the drift is a vital parameter.
Our analysis involves reduction to a low dimensional dynamical system and constructing amplitude
equations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4859259]

I. INTRODUCTION

Pattern formation in two reacting and diffusing systems
was first studied by Turing.1, 2 Turing argued that if the dif-
fusion coefficients of the two species were widely different
and one of the species was autocatalytic with the other in-
hibiting its growth, then the steady homogeneous state will be
unstable against the formation of a patterned state. The insta-
bility could also set in with a time dependence if the reactive
part has an oscillatory feature. Turing patterns have been a
very important aspect of the study of non-linear systems.3–10

Decades later it was found by Rovinsky and Menzinger11–13

that pattern formation could occur even if the two diffu-
sion coefficients were nearly equal provided there was an ex-
ternal electric field and the diffusing species were charged
giving rise to a gradient coupling (an advective term). The
pattern formed in this case would be travelling waves as op-
posed to the stationary patterns of Turing. Recently there
has been some extension of the Turing work in some unex-
pected directions14–21 covering the effect of an electric field
on charged diffusing species and the effect of an advective
drift on neutral species. The latter is the situation when the
medium has a velocity in a definite direction. While charged
reactants with an applied electric field is the simplest real-
ization, we can also envisage a reaction occurring in a con-
tainer where a fluid mixture is forced in from the left at a
constant rate and evacuated at the same rate from the right.
This would be the process in a chemical reactor. A more
complicated situation would be an open flame but there the
wind velocity (drift) could be random. Riaz et al. have shown
numerically22, 23 that the Turing pattern for charged species
could be changed drastically by an applied electric field.24 In
a very recent work the effect of turbulent diffusion on the pat-
tern formation has been considered. In this paper we revisit
the problem with a drift to find the as yet overlooked fact that
the drift induced instability for nearly equal diffusivities can
actually proceed via a double Hopf bifurcation. It is imper-
ative to have a finite sized system for this, so that a homo-
geneous state is never an option and diffusion can actually
induce stability.

The double Hopf bifurcation, also known as a Hopf–
Hopf bifurcation is the bifurcation of a fixed point in a
two parameter family of autonomous ordinary differential
equations in which at the bifurcation point there are two pairs
of purely imaginary eigenvalues. This bifurcation lies at the
transversal intersection of two curves of Hopf bifurcation.
If we consider the dynamics of a complex variable z, then
near a Hopf bifurcation point the dynamics of z is governed
by the canonical form ż = (a + ib)z − z(|z|)2. The fixed
point z = 0 is stable for a < 0 and loses stability at a = 0.
For a > 0, a limit cycle of radius

√
a and frequency b is

stabilized so long as the sign in front of the second term in
the evolution equation is negative. If the system is described
by two complex variables z1 and z2 with the evolutions given
by (a, b, c, d, f, and g are real constants)

ż1 = (a + ib)z1 − z1[|z1|2 + f |z2|2], (1)

ż2 = (c + id)z2 − z2[|z2|2 + g|z1|2], (2)

then the stable fixed point (0,0) undergoes a standard Hopf
bifurcation if a = 0 with c < 0 or if c = 0 with a < 0. If it so
happens that there is an underlying parameter which causes
a = c = 0 at the same point in parameter space then we have
an instability which can become a double Hopf bifurcation. In
what follows we will show that the drift term in the reaction
diffusion system is exactly such a parameter and at a critical
value of it there is the possibility of a double Hopf instability.
Double Hopf bifurcations have usually been associated with
oscillators with time delays25–27 and some swirling flows
in hydrodynamics.28, 29 Our point is that the drift induced
pattern formation in reaction diffusion systems provides a
natural setting for the double Hopf bifurcation.

Here we work with a two-dimensional set up as in the
work of Riaz et al. We take the system to be unbounded in
the y-direction and ±L in x-direction. The boundary condi-
tion is that the current normal to the plates has to vanish at
the boundaries. This means the x-derivatives of the different
concentration fields will vanish at the boundaries. The electric
field is taken to be in the x-direction which leads to a drift in
that direction. The existence of the plates in the x-direction is
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vital to keep the system bounded. The plates also play the very
important role of fixing the wave number in the x-direction
which ensures that the homogeneous state is never an option.
In the absence of the constraint there will be an overall se-
lection mechanism for the wave numbers (k = k1 + k2) but
the individual components are not uniquely determined. In the
presence of the plates, k1 is fixed at π

2L
.

II. THE DYNAMICAL SYSTEM AND LINEAR
STABILITY ANALYSIS

The general reaction diffusion problem for two species
A(x, y, t) ad B(x, y, t) can be modelled by the evolution
equations:

Ȧ = D∇2A + f2ED
∂A

∂x
+ f (A,B), (3)

Ḃ = ∇2B + f1E
∂B

∂x
+ g(A,B), (4)

where f1 and f2 are dimensionless numbers which describe
the coupling strength of the applied field to the species “A”
and “B.” The functions f(A, B) and g(A, B) are reactions rates
and have zeroes at A = A0 and B = B0 which correspond
to equilibrium points for the reactions. In general it is very
difficult to analytically go beyond a linear stability analysis.
To account for the effect of the nonlinear terms, one needs
to carry out a numerical analysis and even then solving a
pair of nonlinear coupled partial differential equations (PDE)
without any prior insight can be needlessly difficult. It is with
this simplification in mind that one carries out a Galerkin
truncation of PDEs. In this procedure a set of PDEs can be
reduced to a low dimensional dynamical system – a set of
coupled ordinary differential equations (ODE). The technique
involves expanding the time and space dependent fields of
the PDEs in a relevant complete set of spatial modes with
time dependent coefficients. Inserting the expansion in a PDE
and equating the coefficient of the same mode on either side
yield an ODE. The dimension of the dynamical system (the
number of ODEs) will be the same as the number of modes
that we want to keep from among the complete set. This is
a technique that has been used extensively for hydrodynamic
problems but to our knowledge not very often for reaction
diffusion systems. We would like to implement this scheme
here and as a first step towards that expand the variables A(x,
t) and B(x, t) about their equilibrium values A0 and B0 as U =
A − A0 and V = B − B0:

U̇ = D∇2U + f2DE
∂U

∂x
+ a10U + a01V

+ 1

2
(a20U

2 + 2a11UV + a02V
2)

+ 1

6
(a30U

3 + 3a21U
2V + 3a12UV 2 + a03V

3), (5)

V̇ = D∇2V + f1E
∂V

∂x
+ b10U + b01V

+ 1

2
(b20U

2 + 2b11UV + b02V
2)

+ 1

6
(b30U

3 + 3b21U
2V + 3b12UV 2 + b03V

3), (6)

where anm = ∂m+nf

∂nA∂mB
|A0,B0 and bnm = ∂m+ng

∂nA∂mB
|A0,B0 .

To construct a Galerkin model, we need to select the
modes. We imagine the substrate to extend from −L to L in
the x-direction and to be of infinite extent in the y-direction.
The requirement of no current at x = ±L forces the wave num-
ber selection k1 = π

2L
for the lowest mode. The optimal wave

number k2 = k in the y-direction will be forced by the insta-
bility of the trivial state U = V = 0. The simplest model will
involve the modes:

U = A1(t)ei π
2L

x cos ky + A∗
1(t)e−i π

2L
x cos ky, (7a)

V = B!(t)e
i π

2L
x cos ky + B∗

1 (t)e−i π
2L

x cos ky. (7b)

Since A1 and B1 are complex variables, we will get a four
dimensional when Eqs. (7a) and (7b) are inserted in Eqs. (5)
and (6) and the terms in ei π

2L
x cos ky equated on either sides

give

Ȧ1 = −D

(
π2

4L2
+ k2

)
A1 + i

π

2L
Df2EA1 + a10A1 + a01B1

+ a30

2
|A1|2A1 + a21

2
A2

1B
∗
1 + a21|A1|2B1

+ a12

2
B2

1A∗
1 + a12|B1|2A1 + a03

2
|B1|2B1, (8a)

Ḃ1 = −
(

π2

4L2
+ k2

)
B1 + i

π

2L
f1EB1 + b10B1 + b01A1

+ b30

2
|B1|2B1 + b21

2
B2

1A∗
1 + b21|B1|2A1

+ b12

2
A2

1B
∗
1 + b12|A1|2B1 + b03

2
|A1|2A1. (8b)

We are interested in the fixed point A1 = B1 = 0 and
carrying out a linear stability analysis, we find that the eigen
values are given by

λ2 − λ(α1 + iα2) + β1 + iβ2 = 0, (9)

where

α1 = a10 + b01 − (1 + D)

(
k2 + π2

4L2

)

= T − (1 + D)K2,

α2 = − π

2L
E(f1 + f2D), (10)

β1 = DK4 − K2(a10 + Db01) + � − π2

4L2
DE2f1f2,

β2 = − π

2L
E[f1a10 + f2Db01 − (f1 + f2)DK2],

with � = a10b01 − a01b10, T = a10 + b01 and K2 = π2

4L2 + k2.
It should be noted that for our four-dimensional dynami-

cal system, other two eigen values are just the complex conju-
gates of the roots found from Eq. (9). For instability to occur
at least one of the eigen values must have a non negative real
part. This fixes the instability condition as

β2
2 ≥ α1(α1β1 + α2β2). (11)
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As the equality in Eq. (11) is satisfied, one root of Eq. (9)
will cross the imaginary axis leading to a standard Hopf bifur-
cation. The frequency will be either of α2 ± γ 2 (depending on
the system parameters), where

γ2 = 1√
2

{[[
α2

1 − α2
2 − 4β1

]2 + 4(α1α2 − 2β2)2
]1/2

− (
α2

1 − α2
2 − 4β

)}1/2
. (12)

In terms of the system parameters the condition of Eq. (11)
becomes

[T − (1 + D)K2]2[K2(a10 + Db01) − b01 − DK4]

− (f1−Df2)2[a10b01−K2(a10 + Db01)+DK4]
π2

4L2
E2 > 0.

(13)

The situation for D � 1 has been extensively analysed (dif-
fusion driven instability). Here we focus on the drift driven
instability for D of O(1). We will set D = 1 for rest of our
analysis.

To understand the existence of the double Hopf bifurca-
tion, we need to look at the second Hopf point. It is important
to write out the roots of Eq. (9) as

2λ = α1 + iα2 ±
√

α2
1 − α2

2 − 4β1 + i(2α1α2 − 4β2),

= α1 + iα2 ± (γ1 + iγ2). (14)

One Hopf bifurcation is obtained for α1 = γ 1, the other for
α1 = −γ 1. The two Hopf bifurcations meet at α1 = γ 1 = 0
which is the condition for double Hopf bifurcation.

From Eq. (10) we immediately see that

T = 2K2. (15)

It is to be understood that Eq. (15) is to be used in con-
junction with Eq. (11). At the double Hopf point the two fre-

quencies are α2 ±
√

α2
2 + 4β1. This sets up the possibility of

a quasi periodic state at the bifurcation point.
Having found the condition for the Hopf bifurcations and

double Hopf bifurcation, we now examine the role of wave
numbers and hence the box size which will have very im-
portant bearing on our discussions. To establish this we first
write the threshold value of the electric field for the onset of
the Hopf bifurcation at D = 1 (this is the case of interest for
us, far removed from the much studied Turing patterns for
D � 1). From Eq. (13) we have

π2 E2
c

4L2
= (T − 2K2)2(T K2 − K4 − �)

[(f1 − f2)2(a10b01 − T K2 + K4)]
, (16)

where we have explicitly written k1 as π /2L. In the complete
absence of diffusion the threshold is driven clearly by the dif-
ferential mobility as noted by Rovinsky and Menzinger.9 With
the diffusion in place as it must be, we need to differentiate
between T < 0 and T > 0 situations. We keep � > 0 to pre-

vent the possibility of a saddle in the drift and diffusion free
case.

III. RESULTS AND AMPLITUDE EQUATIONS

We begin by exploring the linear stability results of
Sec. II for two different situations, T > 0 and T < 0.

A. T < 0

In this case in the absence of diffusion and drift the ori-
gin is a stable focus. At D = 1, diffusion cannot change the
nature of this point. It is left to the electric field to trigger an
instability which it can only if the denominator in Eq. (16) is
negative. With a10b01 < 0, this can happen only if k2 < k2

0,
where k4

0 − T k2
0 + a10b01 = 0. This immediately means that

if the box size L < L0 where L0 = π /2k0, we cannot have an
instability because the box is not long enough in the direction
of the field to sustain the pattern. We now consider the specific
case of the Koch Meinhardt (KM) model20, 30 for which f(A, B)
= A2/B − A + σ and g(A, B) = μ(A2 − B). We can calculate
all the aij, bij from this and get T = [(1 − σ )/(1 + σ ) − μ] and
� = μ. With T < 0 in mind we choose σ = 1/2 and μ = 1/2.

The critical wave number works out to be
√

[ 1−σ
1+σ

] = √
1/3.

According to our calculation there can be no instability for
k > 1/

√
3. For k = 1/

√
6, the (πEc

2L
)2 = 5/4. We numerically

solved Eqs. (8a) and (8b) and found as expected that for k set
at 1/

√
2, there is no instability however high the field. This is

shown in Figs. 1 and 2. With k set at 1/
√

6 ,we see that the
origin is stable for E < Ec (Fig. 3) and for E > Ec (Fig. 4)
the origin is clearly unstable and eventually the system set-
tles down in a periodic state with the frequency given by
α2 − γ 2 as expected from the Hopf bifurcation. Thus, the
numeric bears out the expectations.

B. T > 0

In this case in the absence of diffusion and drift the origin
is an unstable focus. With the help of diffusion the unstable
focus can be stabilized with help from the system size. The

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

Plot of Real and Imaginary parts of A
1
 and B

1

Real(A
1
)

Im(A
1
)

Real(B
1
)

Im(B
1
)

FIG. 1. Plot of the real and imaginary parts of the modes A1 and B1 (KM
model) for E = 4 and k2 = 1

2 . It should be noted that E < Ec and k > k0 are
both preventing pattern formation. As predicted the modes decay to zero.
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1
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FIG. 2. Plot of the real and imaginary parts of the modes A1 and B1 (KM
model) for E = 10 and k2 = 1/2. Now E is above threshold but since system
size is not large enough there should be no pattern formation. We see the
modes decaying to 0.

stabilization will occur (D = 1) for k2 > k2
c = T/2 and can

be ensured if the box size L is smaller than π /2kc. This allows
us to write the roots of Eq. (9) as

λ = k2
c − k2 − ik1E

(f1 + f2)

2

±
√

k4
c −�−k2

1E
2(f1−f2)2

4
+ik1

E(f1−f2)(a10−b01)

2
.

(17)

The instability sets in as a Hopf bifurcation when k = kc

and E = 0 with � > k4
c . At this point lambda consists of

two pairs of imaginary roots which for E > 0 acquires pos-
itive real parts and thus gives a double Hopf instability lead-
ing to a quasi periodic state whose existence, however, can
only be guaranteed by the nonlinear analysis to be described
below. These features are to be easily found in the Lengeyl
Epstein (LE) model31 where f (A,B) = σb[B − AB

(1+B2) ] and

g(A,B) = a − B − 4 AB
(1+B2) with a, b, and σ as positive con-

stants. We list the constants appearing in Eqs. (8a) and (8b)
for this model below (we use the notation c = a/5 and

0 5 10 15 20 25
−0.5

0

0.5

1

Time

Real and Imaginary parts of A
1
 and B

1

 

 

Real(A
1
)

Im(A
1
)

Real(B
1
)

Im(B
1
)

FIG. 3. Plot of the real and imaginary parts of the modes A1 and B1 (KM
model) for E = 1 (below threshold) and k2 = 1

6 (allows pattern formation).
As expected the modes decay to zero.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5
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−0.5

0

0.5

1

1.5

2
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Time

Real and Imaginary parts of A
1
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1
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1
)

Im(A
1
)

Real(B
1
)

Im(B
1
)

FIG. 4. Plot of the real and imaginary parts of the modes A1 and B1 (KM
model) for E = 10 (above threshold) and k2 = 1

6 (allows pattern formation).
We see growing modes as expected.

f = 1 + c2):

a10 = −σbc

1 + c2
, a01 = 2σb

f
,

b10 = −4c

f
, b01 = 3c2 − 5

f
,

a30 = a21 = 0, a12 = 2σbc
4 − f

f 2
,

a03 = 6σb
1 + c4 − 46c2

f 3
,

b30 = b21 = 0, b12 = 8c
(3c2 − 1)

f 3
,

b03 = −8
(9c4 + 1 − 14c2)

f 3
.

We have not considered the KM model here because all
the nonlinear terms in the B1 equation vanish for this model.
We expect the pattern to be quasi periodic in the Lengeyl
Epstein model as the following non linear analysis shows.

To investigate the effect of nonlinear terms, we need to
proceed by constructing an amplitude equation for the ampli-
tude of the periodic state. To do this, we write the system of
Eqs. (8a) and (8b) as (D = 1):

Ȧ1 = α11A1 + α12B1 + N1, (18a)

Ḃ1 = α21A1 + α22B1 + N2, (18b)

where α11 = −K2 + iπ
2L

f2E + a10, α12 = a01, α21 = b10,

α22 = −K2 + iπf1

2L
E + b01, and N1 and N2 are the nonlinear

terms of Eqs. (8a) and (8b). We combine the two equations
above to write[

d2

dt2
− (α11 + α22)

d

dt
+ α11α22 − α12α21

]
A1

= Ṅ1 + α12N2 − α22N1. (19)

The operator on the left-hand side of Eq. (19) depends on E
and E = Ec (given by Eq. (16)), it factors into two roots, ιω

and −β, where ω = α2 ± γ 2 and β = 2α1 + ι(α2∓γ 2), with
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α1 > 0. We can consequently write(
d

dt
− ιω

) (
d

dt
+ β

)
A1

= �E

(
π2

2L2
Ecf1f2− ιπ

2L
(f1a10+f2b01−K2(f1+f2))

)
A1

+ ιπ

2L
(f1 + f2)�EȦ1 + Ṅ1 + α12N2 − α22N1. (20)

To look for periodic states, we seek solutions of Eq. (20)
which have the structure

A1 = F (t)eιωt + G(t)e−ιωt , (21)

where F(t) and G(t) are slowly varying functions of time. It
is expected that if a periodic state exists then the dynamics of
F and G will evolve to stable fixed points. Thus, we need to
obtain the dynamics of F and G assuming that they are slowly
varying functions. It should be noted that a fixed point F 	= 0,
G = 0 or F = 0, G 	= 0 will correspond to a travelling wave
and F = G will correspond to a standing wave. The various
methods of obtaining the evaluation equations for F(t) and
G(t) are well documented. They involve perturbation theory
and removal of secular terms (i.e., terms of the form e±ιωt)
at each order of perturbation theory. Thus, the calculation to
the lowest order involves Eq. (21) and the corresponding B1(t)
given by

B1(t) = (α12)−1[(ιω − α11)Feιωt − (ιω + α11)Ge−ιωt ], (22)

to evaluate the non linear terms in Eq. (20) and extracting
the e±ιωt parts. Straightforward algebra leads to the following
amplitude equations:

Ḟ = �E

([
π2

2L2
Ecf1f2 − πω

2L
(f1 + f2)

])
F

−�E
( ιπ

2L
[f1a10 + f2b01 − K2(f1 + f2)]

)
F

− (μ1 + ιμ2)|F |2F − (ν1 + ν2)|G|2F, (23)

Ġ = �E

([
π2

2L2
Ecf1f2 + πω

2L
(f1 + f2)

])
G

−�E
( ιω

2L
[f1a10 + f2b01 − K2(f1 + f2)]

)
G

− (μ1 + ιμ2)|G|2G − (ν1 + ν2)|F |2G. (24)

For μ1, 2 and ν1, 2 we obtain long complicated expressions in
terms of amn and bmn which by themselves are not illuminat-
ing. The important thing to note is that the travelling wave

fixed points (F = �E[ π2

2L2 Ecf1f2− πω
2L

(f1+f2)]

μ
, G = 0) and (F = 0,

G = �E[ π2

2L2 Ecf1f2+ πω
2L

(f1+f2)]

μ
) exist and are stable, while the

standing wave fixed point F = G does not exist yielding con-
tradictory values for Eqs. (23) and (24). This establishes that
the Hopf bifurcation does lead to travelling wave states.

The last issue to address is what would the situation be
near a double Hopf point. In this case the right-hand side of
Eq. (20) would have the structure ( d

dt
− ιω1)( d

dt
− ιω2)A and

we would be looking for a long time solution which has the

structure

A1(t) = [F1(t)eιω1t + F2(t)eιω2t ], (25)

where F1 and F2 are slowly varying functions which will
satisfy the amplitude equations:

Ḟ1 = �E

([
π2

2L2
Ecf1f2 − πω

2L
(f1 + f2)

])
F1

−�E
( ιπ

2L
[f1a10 + f2b01 − K2(f1 + f2)]

)
F1

− (μ1 + ιμ2)|F1|2F1 − (ν1 + ν2)|F1|2F1, (26)

Ḟ2 = �E

([
π2

2L2
Ecf1f2 + πω

2L
(f1 + f2)

])
F2

−�E
( ιω

2L
[f1a10 + f2b01 − K2(f1 + f2)]

)
F2

− (μ1 + ιμ2)|F2|2F2 − (ν1 + ν2)|F1|2F2. (27)

The fixed point that is relevant is both F1 and F2 are non zero,
and in that case

μ1|F1|2 + ν1|F2|2 = π2

2L2
Ecf1f2 − πω1

2L
(f1 + f2),

ν1|F1|2 + μ1|F2|2 = π2

2L2
Ecf1f2 − πω2

2L
(f1 + f2).

The constraint of |F1|2 and |F2|2 both being positive leads to
constraints on the coefficients. We see that

|F1|2 = π2

2L2

(
Ecf1f2

μ1 + ν1

)
− π

2L
f1f2

(
μ1ω1 − ν1ω2

μ2
1 − ν2

1

)
,

and

|F2|2 = π2

2L2

(
Ecf1f2

μ1 + ν1

)
+ π

2L
f1f2

(
ν1ω1 − μ1ω2

μ2
1 − ν2

1

)
.

IV. CONCLUSION

Here we have actually constructed amplitude equations
for the Turing-Hopf instability to see whether it is a travelling
wave or a standing wave. It is clearly seen that the instability
is of the travelling wave variety when there is an advective
term present. For a finite size system with an advective term,
we can have a double Hopf bifurcation if the system size is
such that the trace of the linear instability matrix is positive.
For the LE system a case study can be made for sigma, b = 1
and a = 5

√
3 whence the trace T = 0.57 and we can have a

double Hopf bifurcation with kc = 0.53. In this special case
the parameters of our model appearing in Eqs. (8a) and (8b)
are a30 = a12 = a21 = b30 = b21 = 0, a03 = −12, b12 = √

3,
and b03 = −5. The negative signs associated with a03 and b03

ensure the existence of the quasi-periodic state. We thus see
that finite size effects in an advective reaction diffusion sys-
tem can induce quasi periodic travelling wave states near the
threshold of the instability through a double Hopf bifurcation.
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